

Unknown A

Trial #1

Trial #2

 $\mathbf{Mass} = \underline{\phantom{\mathbf{g}}}$

 $Mass = \underline{\hspace{1cm}} g$

 $Volume_{H20} = \underline{\qquad} mL$

Volume _{H20} = _____ mL

 $Volume_{H20+A} = \underline{\qquad} mL$

 $Volume_{H20+A} = \underline{\qquad} mL$

 $Volume_{A} = \underline{\hspace{1cm}} mL$

 $Volume_A = \underline{\hspace{1cm}} mL$

Unknown B

Trial #1

Trial #2

 $Mass = \underline{g}$

 $Mass = \underline{\hspace{1cm}} g$

 $Volume_{H20} = \underline{\hspace{1cm}} mL$

Volume $_{H20} =$ mL

 $Volume_{H20+B} = \underline{\qquad} mL$

 $Volume_{H20+B} = \underline{\hspace{1cm}} mL$

Volume $_{\rm B} = \underline{\hspace{1cm}} mL$

 $Volume_B = \underline{\hspace{1cm}} mL$

Calculations – SHOW WORK

- 1) Find average density of pre-1982 pennies
- 2) Find average density of post –1982 pennies
- 3) Find density of unknown A
- 4) Find density of unknown B
- 5) Calculate your percent error for each unknown metal.

Questions

1) Compare densities of pre/post pennies.

How do you account for this?

- 2) Identify both unknowns using chart.
- 3) Give TWO intensive and TWO extensive properties of pennies.

Error:

Determine three possible sources of error and *indicate how they would affect your results*.